General Certificate of Education
June 2008
Advanced Level Examination

MATHEMATICS

Unit Mechanics 4

A~A

MM04
ASSESSMENTand
QUALIFICATIONS
alliance

Thursday 12 June 20089.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MM04.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise.
- Take $g=9.8 \mathrm{~m} \mathrm{~s}^{-2}$, unless stated otherwise.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 A light $\operatorname{rod} A B$ has length 5 metres and the point C on the rod is 1 metre from A. The rod is on a smooth horizontal table and is acted upon by three horizontal forces of magnitude P, Q and $2 \sqrt{3}$ newtons.

The force of magnitude P acts at A, at right angles to the rod.
The force of magnitude $2 \sqrt{3}$ acts at C, at an angle of 60° to the rod.
The force of magnitude Q acts at B, at an angle of 30° to the rod, as shown in the diagram.

The three forces are equivalent to a couple.
(a) Show that $Q=2$ and find the value of P.
(b) Determine the magnitude of the couple.
(c) State the sense of the couple.

2 A framework $E F G H$ consists of five identical light rods, $E F, E H, F G, G H$ and $F H$, which are smoothly jointed at E, F, G and H. Each of the rods $E F, E H, F G$ and $G H$ makes an angle of 60° with the rod $F H$. The framework is suspended from a fixed point D by a string $D E$. The $\operatorname{rod} F H$ is horizontal, and G is vertically below D. A force of 100 N is applied vertically at G. The system, as shown in the diagram, is in equilibrium.

(a) State the magnitude of the force in the string $D E$, giving a reason for your answer.
(2 marks)
(b) Explain why the forces in the rods $E F, E H, F G$ and $G H$ must be of equal magnitude.
(2 marks)
(c) Find the magnitude of the forces in each of the rods $E F, E H, F G$ and $G H$.
(d) Find the magnitude of the force in the rod $F H$.
(e) State which of the five rods could be replaced by ropes, giving reasons for your answers.

3 A light rod has its ends at the points $A(2,3,5)$ and $B(4,6,-1)$. A force \mathbf{F} acts at B, where

$$
\mathbf{F}=2 \mathbf{i}-\mathbf{j}+4 \mathbf{k}
$$

(a) Find $\overrightarrow{A B}$. (1 mark)
(b) Find the moment of \mathbf{F} about the point A. (3 marks)
(c) Show that the magnitude of this moment is $10 \sqrt{5}$.
(2 marks)
(d) Hence, or otherwise, find the acute angle between \mathbf{F} and the rod, giving your answer to the nearest degree.
(4 marks)

4 (a) Prove, using integration, that the moment of inertia of a uniform circular disc, of mass m and radius r, about an axis through its centre and perpendicular to the plane of the disc is $\frac{1}{2} m r^{2}$.
(b) A roundabout in a playground can be modelled as a uniform circular disc of mass 200 kg and radius 1.5 m . The roundabout can rotate freely in a horizontal plane about a vertical axis through its centre O.

The roundabout is rotating at $\frac{\pi}{2}$ radians per second, with Dominic, a child of mass 25 kg , standing at a point A on the edge, as shown in Figure 1.

Figure 1

Assume that Dominic can be modelled as a particle.
(i) Show that the moment of inertia of the system about the vertical axis through O shown in Figure 1 is $281.25 \mathrm{~kg} \mathrm{~m}^{2}$.
(3 marks)
(ii) Dominic then walks to the centre O, as shown in Figure 2. The angular speed of the roundabout changes from $\frac{\pi}{2}$ radians per second to ω radians per second.

Figure 2

Explain why the total angular momentum of the system remains constant as Dominic walks from A to O.
(iii) Find the value of ω.

5 The region bounded by the line $y=\frac{1}{2} x$, the x-axis and the line $x=2 r$ is shown in the diagram.

This region is rotated about the x-axis to form a uniform solid cone of height $2 r$ and radius r.
(a) Show, using integration, that the centre of mass of the cone is at a distance of $\frac{3 r}{2}$ from the origin.
(5 marks)
(b) A rocket consists of two parts. The lower part of the rocket may be modelled as a uniform solid cylinder with radius r, height $2 r$ and density ρ. The upper part of the rocket may be modelled as a uniform solid cone of radius r, height $2 r$ and density $k \rho$, as shown in the diagram.

(i) Show that the centre of mass of the rocket is at a distance of $\left(\frac{6+5 k}{6+2 k}\right) r$ from the base of the rocket.
(ii) The rocket is now placed on a rough plane, which is inclined at an angle of θ to the horizontal, where $\tan \theta=\frac{2}{3}$.

Given that the rocket does not slide and is just on the point of toppling, find the value of k.

Turn over for the next question

6 A uniform rod $P Q$, of mass m and length $6 a$, is free to rotate in a vertical plane about a fixed horizontal axis through P. Initially, the rod is at rest with Q vertically above P.

The rod is slightly disturbed from its initial position. In the subsequent motion, it makes an angle θ with the upward vertical at time t.

(a) (i) Show that the moment of inertia of the rod about the axis through P is $12 m a^{2}$.
(ii) Show that $\dot{\theta}^{2}=\frac{g}{2 a}(1-\cos \theta)$.
(iii) Hence, or otherwise, determine an expression for $\ddot{\theta}$ in terms of a, g and θ.
(2 marks)
(b) Find, in terms of m, g and θ, the force at P which the axis exerts on the rod:
(i) in the direction $P Q$;
(4 marks)
(ii) perpendicular to $P Q$.
(c) Determine the magnitude of the force exerted by the axis on the rod when Q is vertically below P.

END OF QUESTIONS

